value of determinant - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

value of determinant - ترجمة إلى الروسية

SUM OF SIGNED TERMS OF N FACTORS FROM N×N MATRIX WITH NO TWO FACTORS SHARING ROW OR COLUMN
Determinants; Determanent; Determenant; Matrix determinant; Determinant expansion by minors; Determinant theorem; Determinant (mathematics); Determinant of a matrix; Determinant identities; Determinant mathematics; Determinance
  • The area of the parallelogram is the absolute value of the determinant of the matrix formed by the vectors representing the parallelogram's sides.
  • The volume of this [[parallelepiped]] is the absolute value of the determinant of the matrix formed by the columns constructed from the vectors r1, r2, and r3.
  • [[Rule of Sarrus]]

value of determinant      

математика

величина определителя

value of determinant      
мат.
величина определителя
determinant theorem         

математика

теорема о детерминантах

تعريف

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

ويكيبيديا

Determinant

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or |A|.

The determinant of a 2 × 2 matrix is

| a b c d | = a d b c , {\displaystyle {\begin{vmatrix}a&b\\c&d\end{vmatrix}}=ad-bc,}

and the determinant of a 3 × 3 matrix is

| a b c d e f g h i | = a e i + b f g + c d h c e g b d i a f h . {\displaystyle {\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}}=aei+bfg+cdh-ceg-bdi-afh.}

The determinant of an n × n matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of n different entries, and the number of these summands is n ! , {\displaystyle n!,} the factorial of n (the product of the n first positive integers). The Laplace expansion expresses the determinant of an n × n matrix as a linear combination of determinants of ( n 1 ) × ( n 1 ) {\displaystyle (n-1)\times (n-1)} submatrices. Gaussian elimination express the determinant as the product of the diagonal entries of a diagonal matrix that is obtained by a succession of elementary row operations.

Determinants can also be defined by some of their properties: the determinant is the unique function defined on the n × n matrices that has the four following properties. The determinant of the identity matrix is 1; the exchange of two rows (or of two columns) multiplies the determinant by −1; multiplying a row (or a column) by a number multiplies the determinant by this number; and adding to a row (or a column) a multiple of another row (or column) does not change the determinant.

Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more efficient. Determinants are used for defining the characteristic polynomial of a matrix, whose roots are the eigenvalues. In geometry, the signed n-dimensional volume of a n-dimensional parallelepiped is expressed by a determinant. This is used in calculus with exterior differential forms and the Jacobian determinant, in particular for changes of variables in multiple integrals.

What is the الروسية for value of determinant? Translation of &#39value of determinant&#39 to الروسية